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Abstract: Web data extraction has been an important part for 
many Web data analysis applications. In this paper, we 
formulate the data extraction problem as the decoding process 
of page generation based on structured data and tree 
templates[1].  We propose a unsupervised, page-level data 
extraction approach to deduce the schema and templates for 
each individual Deep Website, contains either singleton or 
multiple data records in one Webpage. FiVaTech applies tree 
matching, tree alignment, and mining techniques to achieve 
the challenging task. In experiments, FiVaTech has much 
higher precision than EXALG and is comparable with other 
record-level extraction systems like ViPER and MSE.  The 
experiments show an encouraging result for the test pages 
used in many state-of-the-art Web data extraction works [3]. 

 Keywords: Web data extraction, Multiple trees merging, 
wrapper induction. 

1. INTRODUCTION

 DEEP Web, as is known to everyone, contains 
magnitudes more and valuable information than the surface 
Web. However, making use of such consolidated 
information requires substantial efforts since the pages are 
generated for visualization not for data exchange. Thus, 
extracting information from Web pages for searchable 
Websites has been a key step for Web information 
integration. Generating an extraction program for a given 
search form is equivalent to wrapping a data source such 
that all extractor or wrapper  programs return data of the 
same format for information integration[5]. 

 An important characteristic of pages belonging to 
the same Website is that such pages share the same 
template since they are encoded in a consistent manner 
across all the pages. In other words, these pages are 
generated with a predefined template by plugging data 
values. In practice, template pages can also occur in surface 
Web (with static hyperlinks)[2]. For example, commercial 
Websites often have a template for displaying company 
logos, browsing menus, and copyright announcements, 
such that all pages of the same Website look consistent and 
designed. In addition, templates can also be used to render 
a list of records to show objects of the same kind. Thus, 
information extraction from template pages can be applied 
in many situations. 

 Finding such a common template requires 
multiple pages or a single page containing multiple records 
as input. When multiple pages are given, the extraction 
target aims at page-wide information When single pages 
are given, the extraction target is usually constrained to 

record wide information which involves the addition issue 
of record-boundary detection[4].  

Page-level extraction tasks, although do not 
involve the addition problem of boundary detection, are 
much more complicated than record-level extraction tasks 
since more data are concerned. A common technique that is 
used to find template is alignment: either string alignment 
or tree alignment [3]. 

In this paper, we focus on page-level extraction 
tasks and propose a new approach, called FiVaTech, to 
automatically detect the schema of a Website. The 
proposed technique presents a new structure, called 
fixed/variant pattern tree, a tree that carries all of the 
required information needed to identify the template and 
detect the data schema. 

Figure 1.The FiVaTech approach for wrapper induction. 

2. PROBLEM FORMULATION

The development of FivaTech all pages, occur quite 
fixed as opposed to data values which vary across pages. 
Finding such a common template requires multiple pages or 
a single page containing multiple records as input. When 
multiple pages are given, the extraction target aims at page 
- wide information.  

K. Syed Kousar Niasi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1091-1096

www.ijcsit.com 1091



When single pages are given, the extract ion target is 
usually constrained to record wide information, which 
involves the addition issue of record - boundary detection. 
Page - level extraction tasks, although do not involve the 
addition problem of boundary detection, are much more 
complicated than record – level extraction tasks since more 
data are concerned. As for the problem of distinguishing 
template and data, most approaches assume that HTML 
tags are part of the template. 

All data instances of a web site shall conform to a 
common schema which can be defined as follows. 
Definition 1:   (Structured data) A data schema can be 
of the following types: 
• A basic type β represents a string of tokens which are 
basic units of text. 
• If   τ1 ,τ2 ,. . . ,τk     are    types,    then    their    order    list 
¡τ1 ,τ2 ,. . . ,τk ¿ also forms  a type  τ .  We say  the  type  τ 
is constructed from the  types τ1 ,τ2 ,. . . ,τk using a type 
constructor of order  k.  An  instance of the  k-order  τ is of 
the form ¡x1 , x2 , ..., xk ¿ where x1 , x2 , ..., xk are in- 
stances  of types  τ1 ,τ2 ,. . . ,τk  respectively. The type  τ is 
called 
1.  a tuple,  denoted by  ¡k¿τ , if the  cardinality (the number 

of instances) is 1 for every instantiation. 
2.  an option, denoted by (k)?τ , if the  cardinality  is either  

0 or 1 for every  instantiation. 
3.  a  set,   denoted  by  {k}τ ,  if  the   cardinality   is greater 

than 1 for some instantiation. 
4.  a  disjunction,  denoted  by(τ1 |τ2 |...|τk )τ ,  if  all τi (i = 

1, ..., k)  are  options   and  the  cardinality sum  of the  
k  options:    τ1    to  τk  equal  to  1  for every  
instantiation of τ . 

Definition 2:  (Wrapper Induction) Let λ(TΩ , D) de- 
notes  the  generation model  of some  Web  pages  at time  
t, where  TΩ    denotes the  templates for schema  Ω and  D 
de- notes its extracted data. The problem  of page-level 
wrapper verification is to decide whether a new Web page P 
at time t’  has  been  changed  from  its  generation model  
λ(TΩ , D). We call this problem a record-level wrapper 
verification if Ω is simply a set of k-tuples. 
In this paper, we assume that all of the peer nodes must be 
in the same DOM tree level which is not true for all Web 
sites. We adopt FivaTech, a page-level, unsupervised 
wrapper induction approach which merges the input DOM 
trees into a pattern tree.  A pattern tree removes duplicate 
occurring patterns of set types and contains one 
representation for each data types (tuple, option, 
disjunction, etc).    As  an example,  Figure  2 shows a 
pattern tree  which  contains the merged  DOM  tree  and  
detected schema,  where  we have  a set,  two tuples, two 
options  and  five basics. 
Definition 3:  Given a set of n DOM trees, DOM I = (T, 
xi) (1≤i≤n), created from some unknown template T and 
values { x 1 ,. . .,x n }, deduce the template and values, 
from the set of DOM trees alone. We call this problem a 
page-level information extraction. If one single page (n=1) 
which contains tuple constructors is given as input, the 
problem is to deduce the template for the schema inside the 
tuple constructors. We call this problem a record-level 
information extraction task. 

 
3. SYSTEM DESIGN 

3.1 Multi-tier data center Architecture 
Design is concerned with identifying software 

components specifying relationships among components. 
Specifying software structure and providing blue print for 
the document phase.  

Modularity is one of the desirable properties of 
large systems. It implies that the system is divided into 
several parts. In such a manner, the interaction between 
parts is minimal clearly specified. Design will explain 
software components in detail.  

This will help the implementation of the system. 
Moreover, this will guide the further changes in the system 
to satisfy the future requirements.   
 

 
Figure 2. Multi-tier data center Architecture 

 

 
Figure 3. System Architecture 

 
4. FiVaTECH APPROACH 

4.1 FiVaTech Tree Merging 
There are two main phases in FiVaTech. The  first 

phase is merging  input DOM  trees  to construct the  
fixed/variant tree,  and  the  second phase  is detecting the  
schema  and  the template of a  Web  site  based  on  the  
constructed pattern tree. 
1.  In the peer node recognition step, a modified tree  edit 

distance is designed  to  calculate a matching score for 
two nodes with the same tag 1 name such that set data 
with  various  occurrences still have  high similarity. 

2.  In the second step,  the child nodes will fill up a matrix 
such  that all peer  child  nodes  (similar sub trees 
measured  in the  previous  step)  will be  denoted with  
the same  symbol.   The matrix alignment algorithm 
then traverses the matrix to obtain an aligned peer 
matrix. 
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3.  In pattern mining  step,  the  algorithm discovers  
repetitive  patterns and  merge  them  to  deduce  the  
aligned list. 

4.  Finally, in the last step, optional node merging,   the 
algorithm detects optional nodes based on the 
occurrence vectors.  If a set of adjacent nodes have the 
same occurrence vectors, they will be grouped as 
optional. If a set of adjacent optional nodes have 
complement occurrence vectors,   they will be grouped 
as disjunction. 

 
4.2 Schema Detection 

In this  phase,  FiVaTech detects the  structure of 
the  web site which includes  identifying the  schema  and  
defining the template for each  type constructor of this  
schema.   By the end of the previous phase, basic type, set 
type and optional type are already identified. The  
remaining task  for schema detection in this  phase  is to 
recognize  tuple  type as well as the  order  of the  set type 
and  the  optional data. 

FiVaTech traverses the fixed-variant pattern tree 
from the root downward and marks nodes as k-order (if the 
node is already marked as some data type) or k-tuple. For 
nodes with only one child and not marked as set or optional 
types, there  is no need to mark  it as 1-tuple  (otherwise, 
there  will be too many  1-tuples  in the  schema), thus  the  
system  simply  traverses down  the  path to  discover  other  
type nodes. For nodes with more than one branch (child), 
the system will mark them as k-order if k children contain a 
data type.  
Finally, the schema tree S can then be obtained by 
excluding all of the tag nodes that have no types. 

Note  that FiVaTech uses  tree  edit  distance to  
measure the  similarity among  nodes  with  the  same  tag  
in the  same level of the  inputted Web  pages,  which 
exploits  only structural information to  measure   the  
similarity.   Since visual information is recommended and 
important for similarity measure, we propose a classifier-
based approach for peer node recognition. 
 
4.3 Peer Matrix Alignment 

After peer node recognition, all peer sub trees will 
be given the same symbol.  For leaf  nodes,  two  text  
nodes  take  the same symbol  when they have the same text 
values,  and  two <img> tag nodes  take the same symbol  
when they have the same  SRC attribute values.  To convert  
M  into  an  aligned peer  matrix,  we  work  row  by row  
such  that  each  row  has (except   for  empty  columns) 
either   the  same   symbol   for every column or is a text 
(<img>) node  of variant text (SRC attribute, respectively) 
values.  In the latter case, it will be marked as basic-typed 
for variant texts.  From the aligned matrix   M, we   get   a 
list   of nodes,   where each   node corresponds to a row in 
the aligned matrix. 
4.4 Pattern Mining 

This  pattern step   is  designed  to  handle  set-
typed data, where multiple values  occur;  thus,  a naive  
approach is to discover repetitive patterns  in  the  input. 
However, there can be many repetitive patterns discovered 
and a pattern can be embedded in another pattern, which   

makes   the deduction of the template difficult.  The good  
news  is that we  can  neglect   the  effect  of  missing 
attributes  (optional data)  since they  are handled in the 
previous step.  Thus, we should focus on how   repetitive 
patterns are merged to deduce the data structure. In this  
section,  we  detect  every consecutive repetitive pattern 
(tandem repeat) and  merge them  (by deleting all 
occurrences except  for the  first  one) from   small   length   
to  large   length.   This  is  because   the structured data  
defined here  are  nested and  if we  neglect the  effect  of 
optional, instances of a set-type data  should occur  
consecutively according to the problem definition. 
 
4.5 Filtering Out Template Blocks in the Inputted DOM 
Trees 

The  Deep  Web  usually  contains two  types  of 
blocks  in the  generated Web  pages:   template data blocks  
and  data rich  blocks.   Template data blocks are the 
frames/sections of the Web pages that contain template data 
such as advertisements, navigational panels and so on.  
Data rich blocks are the frames/sections of the Web pages 
that contain relevant data of interest to the user.  Although 
template blocks can be detected by FiVaTech through 
recursive  comparison of peer  nodes  from  root,  the  
process  could  be  quite  time consuming. To improve the 
efficiency, we propose an image- based step to filter out 
template blocks before applying the peer nodes recognition 
step for tree merging. 
Our algorithm filtering Template Blocks has two main 
assumptions.  First, template blocks  for  various  pages  of 
a Web  site  are  displayed with  the  same  content.  Not 
only does the rendered image look the same, the tags that 
correspond to such template blocks also co-located in the 
same path of the DOM trees.   Second, the area for a data 
rich block often occupies the biggest area in the whole Web 
page. Based on the first assumption, we can remove 
template sub- trees in the preprocessing step.  

However, subtrees with the same images in a data 
rich block are usually not template. As shown in Figure  5, 
the algorithm recursively traverses one  of the  inputted 
DOM  trees  from  the  root  downward and  checks for the  
existence  of some child node c with  percentage Area(c) > 
40% where  percentageArea(c) is defined as the  percentage 
of the  image  area  corresponds to node  c to the  whole 
area  of the  displayed page): 
                                    nodeArea(c) 
percentageArea(c) = -------------------- % 
                                    nodeArea(< Body >) 

 
If all child nodes have percentage Area less than 

40%, the algorithm stops or the algorithm identifies the 
child node with the biggest percentage Area value.  The 
algorithm then  keeps  the  biggest  node  and  all  
remaining children  nodes  that have  no identical subtrees 
in the  other DOM  trees. 

Our experiments show that these values are useful 
and give good results. 
 • Parent: the parent node in the DOM tree. 
• TextContent: the text contents within the subtree. 
• NoChildren: number of child nodes in the subtree. 
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• ChildHeight:  The depth of the subtree of the current node 
• LeafNode:     whether the   node   has   children   or not 
(Boolean feature). 
• ClassAttr: The class name of the HTML tag. 
• Path: The numbered path of the DOM tree node. 

  The partial path includes the tag name and its 
parent tag name.   Each tag name is followed by a number 
representing location in the parent node (from left to right 
starting at 1).   
• Token:  the number of tokens in leaf text content. 
• Digit:  the number of digits in leaf text content. 
• Letter: the number of letters in leaf text content. 
• UpperCase: the number of capitalized letter in leaf text 
content. 
• LowerCases:  the number of lower case. 

The appropriate values of the attributes are based 
on our empirical results.  For example, the value “Both” of 
the at- tribute Node1IsLeaf means, that both node1 and 
node2 are leaves. As  another example,   the  value  “Sim”  
of the  at- tribute Same Children means  that the percentage 
of the size difference  of the  two  nodes  is  less  than 10%.    
Also, the value “Empty” means that the contents of the two 
nodes are empty.   Our experiments show that these values 
are useful and give good results. 
 

5. RELATED WORKS: 
 Given a set of training pages from a Web site, we 

use DOM trees of the Web pages as input to detect the 
schema of this site we try to merge all DOM trees at the 
same time into a single tree called a fixed/variant pattern 
tree. From this pattern tree, we can recognize variant leaf 
nodes for basic - typed data and mine repetitive nodes for 
set - typed data. The resulting pattern tree is then used to 
detect the template and the schema of the Web site. The 
key challenge here is how to merge multiple trees at the 
same time. Our solution is to break down the multiple trees 
merging problem from a tree level to a string level and 
design a new algorithm for multiple string alignment that 
considers both missing data and multiple - value data. 
5.1 Approaches using DOM Tree 

Information many approaches for Web data 
extraction consider and operate on DOM tree structure. 
MDR [18] analyzes the child nodes under each parent node 
and finds generalized nodes and data regions by 
enumerating possible combinations of child nodes. In MDR 
string edit distance is used to compute the similarity 
between tag sequences of two generalized nodes. However, 
the goal of MDR is to identify data records. MDR does not 
align the data items in each data record. Meanwhile, due to 
missing and noisy information, it may find wrong 
combination of sub trees, DEPTA [8] uses visual gaps 
between data records to find out data records t uses partial 
tree alignment technique to align data fields of data records. 
NET [10] extends DEPTA by supporting extraction of 
nested records. ViPER [4] uses primitive tandem repeats 
and visual context information for record segmentation and 
enhances the concept of generalized nodes. This provides a 
better subtree comparing method than MDR which allows 
consecutive data records with various lengths. In DeLa[9] 
sufix trees are built to detect C-Repeated patterns in 

webpage string and its algorithm can extract the nested 
objects. FiVaTech [1] uses tree matching score for subtree 
comparison, however, the bigger goal is to find the schema 
and template for the whole page. 
5.2 Approaches using Visual Information 

Some approaches improve the task of web data 
extraction by using the visual information. ViNTs [2] and 
MSE [3] use visual content features on a browser to 
identify candidate content line. ViPER [4] uses visual 
information for global multiple sequence alignment. 
Although visual information is used in these approaches, 
for similarity calculation they still use HTML tag structure 
as primary information.  ViDE[5] constructs a visual block 
tree. Its main visual features are position features, layout 
features, appearance features, and content features and they 
can be obtained from web page layout (location, size, and 
font). 
5.3 Page - level Extraction Systems 

EXLAG [6] and Road Runner [7] are unsupervised 
systems for page level web data extraction. Road Runner 
extracts data by comparing a pair of web pages to get the 
template. It works in three steps: A (Align), CM (Collapse 
under Mismatch), and E (Extract). It supports the 
backtracking mechanism if optional or iterated tags are 
found. EXLAG extracts data by forming and analyzing 
equivalence classes. In EXLAG d Tokens (Differentiating 
Tokens) are aggregated in equivalence classes if they have 
same occurrence frequency in all input web pages. For 
template generation large and frequent equivalence classes 
(LFEQs) are extracted EXALG and Road Runner operates 
on HTML tags, while FiVaTech manipulate DOM trees in 
order to   find out peer nodes (i.e. nodes with the same tag 
names but different Roles )  

 
6. EXPERIMENTS 

6.1 Performance Metrics 
We  conducted two  experiments  to  evaluate  the  
schema resulted by our  system and  compare FiVaTech  
with  other recent   approaches. The  first  experiment is  
conducted  to evaluate the  schema   resulted by  our  
system, and   at  the same time, to compare FiVaTech 
with EXALG [1]; the page- level data  extraction 
approach that  also detects the schema of  a  Website.   
The   second   experiment  is  conducted  to evaluate the  
extraction of data  records or interchangeably search  
result  records (SRRs), and  compare FiVaTech  with the  
three  state-of-the-art approaches: DEPTA, ViPER, and  
MSE.  

To conduct the second   experiment, FiVaTech 
has an extra task of recognizing data sections in a 
Website.  A data section is the area in the Webpage that 
includes multiple instances of a data record (SRRs). 
FiVaTech  recognizes the set  of nodes  nSRRs  in the  
schema  tree  that  corresponds to different data  sections  
by identifying the outermost set type nodes,  i.e., the  
path  from  the  node  nSRR  to the  root  of the schema  
tree has no other  nodes  of set type. A special  case is 
when the identified node  nSRR  in the schema  tree has 
only one child node  of another set type, this means that 
data records of this section   are   presented  in   more   
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than   one   column  of  a Webpage, while  FiVaTech still 
catches  the data. 

Given a set of Web pages of a Website as input, 
FiVaTech outputs three types of files for the Website.  
The first type (a text file) presents the schema (data 
values) of the Website in an XML-like structure. We use 
these XML files in the first experiment to compare 
FiVaTech with EXALG. The second type of file (an html 
file) presents the extracted SRRs (of each dynamic 
section) of the test and the training Web pages of the 
Website.  A simple  extractor program that  uses  both the   
identified  nSRR   nodes   in  the   schema   tree   and   
the templates associated with  these  nodes  is 
implemented to output these  HTML  files. We use these 
files in the second experiment to evaluate FiVaTech as an 
SRRs extractor and compare the system with the three 
record-level approaches DEPTA, ViPER, and MSE. 
Finally,  the third type  of file (an Excel file) contains the 
data  items  of the set of all attributes of a basic  type;  
every  column in the  file has  the  set  of all instances of a 
basic type  that are collected  from the test and the  
training  Web pages. We  use  these   Excel  files  in  the 
second   experiment  to  compare  the  alignment  
results  of FiVaTech with  the alignment results of 
DEPTA. 
6.1 FiVaTech as Schema Extractor 

Given the detected schema Se of a Website and 
the manually constructed schema Sm for this site, 
EXALG evaluates the resulted schema   Se   by 
comparing data extracted by leaf attributes Ae of this 
schema from collections of Web pages of this site. 
However, this is not enough for two reasons. First, many 
Web applications (e.g., information integration systems) 
need such schemas as input, so it is very important to 
evaluate the   whole   schema Se.  Second,   for  Web   
data extraction,  the   values   of  an  attribute  may   be  
extracted correctly  (partially correct  as defined by 
EXALG [1]) but its schema  is incorrect, and  vice versa.  
For example, the first instance of a repetitive data record 
is often excluded from the set but is recognized as a 
tuple. Thus, all instances of the data record are extracted 
although the schema is wrong (the first instance is 
identified as of a tuple type while the remaining are 
instances of a set type).  Meanwhile, many  disjunctive 
types  and  empty types  (corresponding to  no  data  in  
the schema   Sm ) are  extracted by  EXALG  but  are  
considered correct because  they did  not extract  wrong 
results. 
6.2 FiVaTech as a SRRs Extractor 

 The popular approaches that extract SRRs 
from one or more data sections of a Webpage, the main 
problem is to detect record boundaries. The minor 
problem is to align data inside these data records. 
However, most approaches concern with the main 
problem except for DEPTA, which applies partial tree 
alignment for the second problem. Therefore, we 
compare FiVaTech with DEPTA in both steps and focus 
on the first step when comparing with ViPER and MSE. 

 

In the  second  experiment (a comparison with  
DEPTA), we  configure FiVaTech  to detect  the  schema  
from  a single Webpage,  although  this   will   give   an   
incorrect  schema outside  the   span   of  sections   of  
multiple  data   records (nSRRs ), but  we are only 
concerning with  data  sections  and the  SRRs  inside   
each  section.   We  got  the  system demo from  the  
author and  ran  DEPTA  on the  manually labeled 
Testbed  for Information Extraction from  Deep  Web 
TBDW [12] Version  1.02 available at 
http://daisen.cc.kyushu- u.ac.jp/TBDW/. 
Unfortunately, DEPTA gave a result only for 11 Websites 
and could not produce any output for the remaining 40 
sites. So, we conducted the following experiment for 
these   11 Websites.   For SRRs extraction, we just used the 
Web pages that   have   multiple data   records.  DEPTA   
gave   a good result   for six Websites   and   extracted 
incorrect SRRs for four Websites.  For the last Website 
(the site numbered 13 in   Test bed),    DEPTA   merged 
every   two   correct   data records and   extracted them   
as a single data   record.   We considered half of the data 
records are not extracted for this last site. 

The last experiment compares FiVaTech with 
the two visual-based data extraction systems, ViPER and 
MSE. The first one (ViPER) is concerning with extracting 
SRRs from a single   (major)   data   section,   while   the   
second   one   is a multiple section extraction system. We 
use the 51 Websites of the  Testbed  referred above  to  
compare FiVaTech  with ViPER, and  the 38 multiple 
sections  Websites  used  in MSE to  compare our  system 
with  MSE. Actually, extracting of SRRs from Web 
pages that have one or more data sections is a similar task.  
The results in Table 3 show that all of the current data 
extraction systems perform well in detecting data record 
boundaries inside one or more data sections of a 
Webpage. The  closeness of the  results between 
FiVaTech and   the   two   visual-based  Web  data   
extraction  systems ViPER and  MSE gives  an 
indication that  until  this moment visual  information do  
not  provide the  required improvement   that   
researchers expect.   This  also  appeared in  the 
experimental results of ViNTs  [15]; the  visual-based 
Web data  extraction with  and  without utilizing visual  
features. FiVaTech   fails   to   extract   SRRs when the   
peer   node recognition algorithm incorrectly measures 
the similarities among SRRs due   to the very different 
structure among them.   Practically,  this  occurred very  
infrequently in  the entire   test  page  (e.g.,  site  
numbered 27  in  the  Testbed). Therefore, now, we can 
claim that SRRs extraction is not a key challenge for the 
problem of Web data extraction. 

On  a  Core 2 Duo  (2.00 GHz)  laptop,  the  
response time  is about  5-50 seconds, where the 
majority of time is consumed at   the   peer   node   
recognition  step. Therefore, the running time of 
FiVaTech has a wide range (5-50 seconds) and leaves 
room for improvement. 
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6.3 Performance Evaluation 
TABLE1 Performance on 11 Websites from Testbed 

Version 1.02 

 
Table 2 Performance Comparison between ViPER and 

MSE 

 
 

Chart 1.Performance on 11 Websites from Testbed 
Version 1.02 

 
 

Chart 2.Performance Comparison between ViPER and 
MSE 

 

 
7. CONCLUSION 

 We can highlight three conclusion, Grid 
applications have an increasing need of database systems. 
Combining Grid and database technologies is an essential 
approach to meet the requirements of large-scale Gird 
applications. Almost every application running on Grid has 
many requirements for access to structured data, Grid as a 
platform with their resources can provide many benefits for 
such king of database system.  
7.1 Future Enhancement
          Future improvements in project management may be 
made through better tools and practices. In future the 
develop extraction template pages using on tree matching 
algorithm and also used DOM tree matching algorithm in 
well successful new project to the corresponding developer. 
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