
Page-Level Data Extraction Approach for Web
Pages Using Data Mining Techniques

K. Syed Kousar Niasi1, Dr. E. Kannan2, M. Mohamed Suhail3

1Assistant Professor, Dept of Computer Science, Jamal Mohamed College, India.
2Dean. Dr. RR & SR University, VelTech, Avadi, India

3Lecturer, Dept of Computer Science, Jamal Mohamed College, Trichy, India.

Abstract: Web data extraction has been an important part for
many Web data analysis applications. In this paper, we
formulate the data extraction problem as the decoding process
of page generation based on structured data and tree
templates[1]. We propose a unsupervised, page-level data
extraction approach to deduce the schema and templates for
each individual Deep Website, contains either singleton or
multiple data records in one Webpage. FiVaTech applies tree
matching, tree alignment, and mining techniques to achieve
the challenging task. In experiments, FiVaTech has much
higher precision than EXALG and is comparable with other
record-level extraction systems like ViPER and MSE. The
experiments show an encouraging result for the test pages
used in many state-of-the-art Web data extraction works [3].

 Keywords: Web data extraction, Multiple trees merging,
wrapper induction.

1. INTRODUCTION

 DEEP Web, as is known to everyone, contains
magnitudes more and valuable information than the surface
Web. However, making use of such consolidated
information requires substantial efforts since the pages are
generated for visualization not for data exchange. Thus,
extracting information from Web pages for searchable
Websites has been a key step for Web information
integration. Generating an extraction program for a given
search form is equivalent to wrapping a data source such
that all extractor or wrapper programs return data of the
same format for information integration[5].

 An important characteristic of pages belonging to
the same Website is that such pages share the same
template since they are encoded in a consistent manner
across all the pages. In other words, these pages are
generated with a predefined template by plugging data
values. In practice, template pages can also occur in surface
Web (with static hyperlinks)[2]. For example, commercial
Websites often have a template for displaying company
logos, browsing menus, and copyright announcements,
such that all pages of the same Website look consistent and
designed. In addition, templates can also be used to render
a list of records to show objects of the same kind. Thus,
information extraction from template pages can be applied
in many situations.

 Finding such a common template requires
multiple pages or a single page containing multiple records
as input. When multiple pages are given, the extraction
target aims at page-wide information When single pages
are given, the extraction target is usually constrained to

record wide information which involves the addition issue
of record-boundary detection[4].

Page-level extraction tasks, although do not
involve the addition problem of boundary detection, are
much more complicated than record-level extraction tasks
since more data are concerned. A common technique that is
used to find template is alignment: either string alignment
or tree alignment [3].

In this paper, we focus on page-level extraction
tasks and propose a new approach, called FiVaTech, to
automatically detect the schema of a Website. The
proposed technique presents a new structure, called
fixed/variant pattern tree, a tree that carries all of the
required information needed to identify the template and
detect the data schema.

Figure 1.The FiVaTech approach for wrapper induction.

2. PROBLEM FORMULATION

The development of FivaTech all pages, occur quite
fixed as opposed to data values which vary across pages.
Finding such a common template requires multiple pages or
a single page containing multiple records as input. When
multiple pages are given, the extraction target aims at page
- wide information.

K. Syed Kousar Niasi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1091-1096

www.ijcsit.com 1091

When single pages are given, the extract ion target is
usually constrained to record wide information, which
involves the addition issue of record - boundary detection.
Page - level extraction tasks, although do not involve the
addition problem of boundary detection, are much more
complicated than record – level extraction tasks since more
data are concerned. As for the problem of distinguishing
template and data, most approaches assume that HTML
tags are part of the template.

All data instances of a web site shall conform to a
common schema which can be defined as follows.
Definition 1: (Structured data) A data schema can be
of the following types:
• A basic type β represents a string of tokens which are
basic units of text.
• If τ1 ,τ2 ,. . . ,τk are types, then their order list
¡τ1 ,τ2 ,. . . ,τk ¿ also forms a type τ . We say the type τ
is constructed from the types τ1 ,τ2 ,. . . ,τk using a type
constructor of order k. An instance of the k-order τ is of
the form ¡x1 , x2 , ..., xk ¿ where x1 , x2 , ..., xk are in-
stances of types τ1 ,τ2 ,. . . ,τk respectively. The type τ is
called
1. a tuple, denoted by ¡k¿τ , if the cardinality (the number

of instances) is 1 for every instantiation.
2. an option, denoted by (k)?τ , if the cardinality is either

0 or 1 for every instantiation.
3. a set, denoted by {k}τ , if the cardinality is greater

than 1 for some instantiation.
4. a disjunction, denoted by(τ1 |τ2 |...|τk)τ , if all τi (i =

1, ..., k) are options and the cardinality sum of the
k options: τ1 to τk equal to 1 for every
instantiation of τ .

Definition 2: (Wrapper Induction) Let λ(TΩ , D) de-
notes the generation model of some Web pages at time
t, where TΩ denotes the templates for schema Ω and D
de- notes its extracted data. The problem of page-level
wrapper verification is to decide whether a new Web page P
at time t’ has been changed from its generation model
λ(TΩ , D). We call this problem a record-level wrapper
verification if Ω is simply a set of k-tuples.
In this paper, we assume that all of the peer nodes must be
in the same DOM tree level which is not true for all Web
sites. We adopt FivaTech, a page-level, unsupervised
wrapper induction approach which merges the input DOM
trees into a pattern tree. A pattern tree removes duplicate
occurring patterns of set types and contains one
representation for each data types (tuple, option,
disjunction, etc). As an example, Figure 2 shows a
pattern tree which contains the merged DOM tree and
detected schema, where we have a set, two tuples, two
options and five basics.
Definition 3: Given a set of n DOM trees, DOM I = (T,
xi) (1≤i≤n), created from some unknown template T and
values { x 1 ,. . .,x n }, deduce the template and values,
from the set of DOM trees alone. We call this problem a
page-level information extraction. If one single page (n=1)
which contains tuple constructors is given as input, the
problem is to deduce the template for the schema inside the
tuple constructors. We call this problem a record-level
information extraction task.

3. SYSTEM DESIGN

3.1 Multi-tier data center Architecture
Design is concerned with identifying software

components specifying relationships among components.
Specifying software structure and providing blue print for
the document phase.

Modularity is one of the desirable properties of
large systems. It implies that the system is divided into
several parts. In such a manner, the interaction between
parts is minimal clearly specified. Design will explain
software components in detail.

This will help the implementation of the system.
Moreover, this will guide the further changes in the system
to satisfy the future requirements.

Figure 2. Multi-tier data center Architecture

Figure 3. System Architecture

4. FiVaTECH APPROACH

4.1 FiVaTech Tree Merging
There are two main phases in FiVaTech. The first

phase is merging input DOM trees to construct the
fixed/variant tree, and the second phase is detecting the
schema and the template of a Web site based on the
constructed pattern tree.
1. In the peer node recognition step, a modified tree edit

distance is designed to calculate a matching score for
two nodes with the same tag 1 name such that set data
with various occurrences still have high similarity.

2. In the second step, the child nodes will fill up a matrix
such that all peer child nodes (similar sub trees
measured in the previous step) will be denoted with
the same symbol. The matrix alignment algorithm
then traverses the matrix to obtain an aligned peer
matrix.

K. Syed Kousar Niasi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1091-1096

www.ijcsit.com 1092

3. In pattern mining step, the algorithm discovers
repetitive patterns and merge them to deduce the
aligned list.

4. Finally, in the last step, optional node merging, the
algorithm detects optional nodes based on the
occurrence vectors. If a set of adjacent nodes have the
same occurrence vectors, they will be grouped as
optional. If a set of adjacent optional nodes have
complement occurrence vectors, they will be grouped
as disjunction.

4.2 Schema Detection

In this phase, FiVaTech detects the structure of
the web site which includes identifying the schema and
defining the template for each type constructor of this
schema. By the end of the previous phase, basic type, set
type and optional type are already identified. The
remaining task for schema detection in this phase is to
recognize tuple type as well as the order of the set type
and the optional data.

FiVaTech traverses the fixed-variant pattern tree
from the root downward and marks nodes as k-order (if the
node is already marked as some data type) or k-tuple. For
nodes with only one child and not marked as set or optional
types, there is no need to mark it as 1-tuple (otherwise,
there will be too many 1-tuples in the schema), thus the
system simply traverses down the path to discover other
type nodes. For nodes with more than one branch (child),
the system will mark them as k-order if k children contain a
data type.
Finally, the schema tree S can then be obtained by
excluding all of the tag nodes that have no types.

Note that FiVaTech uses tree edit distance to
measure the similarity among nodes with the same tag
in the same level of the inputted Web pages, which
exploits only structural information to measure the
similarity. Since visual information is recommended and
important for similarity measure, we propose a classifier-
based approach for peer node recognition.

4.3 Peer Matrix Alignment

After peer node recognition, all peer sub trees will
be given the same symbol. For leaf nodes, two text
nodes take the same symbol when they have the same text
values, and two tag nodes take the same symbol
when they have the same SRC attribute values. To convert
M into an aligned peer matrix, we work row by row
such that each row has (except for empty columns)
either the same symbol for every column or is a text
() node of variant text (SRC attribute, respectively)
values. In the latter case, it will be marked as basic-typed
for variant texts. From the aligned matrix M, we get a
list of nodes, where each node corresponds to a row in
the aligned matrix.
4.4 Pattern Mining

This pattern step is designed to handle set-
typed data, where multiple values occur; thus, a naive
approach is to discover repetitive patterns in the input.
However, there can be many repetitive patterns discovered
and a pattern can be embedded in another pattern, which

makes the deduction of the template difficult. The good
news is that we can neglect the effect of missing
attributes (optional data) since they are handled in the
previous step. Thus, we should focus on how repetitive
patterns are merged to deduce the data structure. In this
section, we detect every consecutive repetitive pattern
(tandem repeat) and merge them (by deleting all
occurrences except for the first one) from small length
to large length. This is because the structured data
defined here are nested and if we neglect the effect of
optional, instances of a set-type data should occur
consecutively according to the problem definition.

4.5 Filtering Out Template Blocks in the Inputted DOM
Trees

The Deep Web usually contains two types of
blocks in the generated Web pages: template data blocks
and data rich blocks. Template data blocks are the
frames/sections of the Web pages that contain template data
such as advertisements, navigational panels and so on.
Data rich blocks are the frames/sections of the Web pages
that contain relevant data of interest to the user. Although
template blocks can be detected by FiVaTech through
recursive comparison of peer nodes from root, the
process could be quite time consuming. To improve the
efficiency, we propose an image- based step to filter out
template blocks before applying the peer nodes recognition
step for tree merging.
Our algorithm filtering Template Blocks has two main
assumptions. First, template blocks for various pages of
a Web site are displayed with the same content. Not
only does the rendered image look the same, the tags that
correspond to such template blocks also co-located in the
same path of the DOM trees. Second, the area for a data
rich block often occupies the biggest area in the whole Web
page. Based on the first assumption, we can remove
template sub- trees in the preprocessing step.

However, subtrees with the same images in a data
rich block are usually not template. As shown in Figure 5,
the algorithm recursively traverses one of the inputted
DOM trees from the root downward and checks for the
existence of some child node c with percentage Area(c) >
40% where percentageArea(c) is defined as the percentage
of the image area corresponds to node c to the whole
area of the displayed page):
 nodeArea(c)
percentageArea(c) = -------------------- %
 nodeArea(< Body >)

If all child nodes have percentage Area less than

40%, the algorithm stops or the algorithm identifies the
child node with the biggest percentage Area value. The
algorithm then keeps the biggest node and all
remaining children nodes that have no identical subtrees
in the other DOM trees.

Our experiments show that these values are useful
and give good results.
 • Parent: the parent node in the DOM tree.
• TextContent: the text contents within the subtree.
• NoChildren: number of child nodes in the subtree.

K. Syed Kousar Niasi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1091-1096

www.ijcsit.com 1093

• ChildHeight: The depth of the subtree of the current node
• LeafNode: whether the node has children or not
(Boolean feature).
• ClassAttr: The class name of the HTML tag.
• Path: The numbered path of the DOM tree node.

 The partial path includes the tag name and its
parent tag name. Each tag name is followed by a number
representing location in the parent node (from left to right
starting at 1).
• Token: the number of tokens in leaf text content.
• Digit: the number of digits in leaf text content.
• Letter: the number of letters in leaf text content.
• UpperCase: the number of capitalized letter in leaf text
content.
• LowerCases: the number of lower case.

The appropriate values of the attributes are based
on our empirical results. For example, the value “Both” of
the at- tribute Node1IsLeaf means, that both node1 and
node2 are leaves. As another example, the value “Sim”
of the at- tribute Same Children means that the percentage
of the size difference of the two nodes is less than 10%.
Also, the value “Empty” means that the contents of the two
nodes are empty. Our experiments show that these values
are useful and give good results.

5. RELATED WORKS:
 Given a set of training pages from a Web site, we

use DOM trees of the Web pages as input to detect the
schema of this site we try to merge all DOM trees at the
same time into a single tree called a fixed/variant pattern
tree. From this pattern tree, we can recognize variant leaf
nodes for basic - typed data and mine repetitive nodes for
set - typed data. The resulting pattern tree is then used to
detect the template and the schema of the Web site. The
key challenge here is how to merge multiple trees at the
same time. Our solution is to break down the multiple trees
merging problem from a tree level to a string level and
design a new algorithm for multiple string alignment that
considers both missing data and multiple - value data.
5.1 Approaches using DOM Tree

Information many approaches for Web data
extraction consider and operate on DOM tree structure.
MDR [18] analyzes the child nodes under each parent node
and finds generalized nodes and data regions by
enumerating possible combinations of child nodes. In MDR
string edit distance is used to compute the similarity
between tag sequences of two generalized nodes. However,
the goal of MDR is to identify data records. MDR does not
align the data items in each data record. Meanwhile, due to
missing and noisy information, it may find wrong
combination of sub trees, DEPTA [8] uses visual gaps
between data records to find out data records t uses partial
tree alignment technique to align data fields of data records.
NET [10] extends DEPTA by supporting extraction of
nested records. ViPER [4] uses primitive tandem repeats
and visual context information for record segmentation and
enhances the concept of generalized nodes. This provides a
better subtree comparing method than MDR which allows
consecutive data records with various lengths. In DeLa[9]
sufix trees are built to detect C-Repeated patterns in

webpage string and its algorithm can extract the nested
objects. FiVaTech [1] uses tree matching score for subtree
comparison, however, the bigger goal is to find the schema
and template for the whole page.
5.2 Approaches using Visual Information

Some approaches improve the task of web data
extraction by using the visual information. ViNTs [2] and
MSE [3] use visual content features on a browser to
identify candidate content line. ViPER [4] uses visual
information for global multiple sequence alignment.
Although visual information is used in these approaches,
for similarity calculation they still use HTML tag structure
as primary information. ViDE[5] constructs a visual block
tree. Its main visual features are position features, layout
features, appearance features, and content features and they
can be obtained from web page layout (location, size, and
font).
5.3 Page - level Extraction Systems

EXLAG [6] and Road Runner [7] are unsupervised
systems for page level web data extraction. Road Runner
extracts data by comparing a pair of web pages to get the
template. It works in three steps: A (Align), CM (Collapse
under Mismatch), and E (Extract). It supports the
backtracking mechanism if optional or iterated tags are
found. EXLAG extracts data by forming and analyzing
equivalence classes. In EXLAG d Tokens (Differentiating
Tokens) are aggregated in equivalence classes if they have
same occurrence frequency in all input web pages. For
template generation large and frequent equivalence classes
(LFEQs) are extracted EXALG and Road Runner operates
on HTML tags, while FiVaTech manipulate DOM trees in
order to find out peer nodes (i.e. nodes with the same tag
names but different Roles)

6. EXPERIMENTS

6.1 Performance Metrics
We conducted two experiments to evaluate the
schema resulted by our system and compare FiVaTech
with other recent approaches. The first experiment is
conducted to evaluate the schema resulted by our
system, and at the same time, to compare FiVaTech
with EXALG [1]; the page- level data extraction
approach that also detects the schema of a Website.
The second experiment is conducted to evaluate the
extraction of data records or interchangeably search
result records (SRRs), and compare FiVaTech with the
three state-of-the-art approaches: DEPTA, ViPER, and
MSE.

To conduct the second experiment, FiVaTech
has an extra task of recognizing data sections in a
Website. A data section is the area in the Webpage that
includes multiple instances of a data record (SRRs).
FiVaTech recognizes the set of nodes nSRRs in the
schema tree that corresponds to different data sections
by identifying the outermost set type nodes, i.e., the
path from the node nSRR to the root of the schema
tree has no other nodes of set type. A special case is
when the identified node nSRR in the schema tree has
only one child node of another set type, this means that
data records of this section are presented in more

K. Syed Kousar Niasi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1091-1096

www.ijcsit.com 1094

than one column of a Webpage, while FiVaTech still
catches the data.

Given a set of Web pages of a Website as input,
FiVaTech outputs three types of files for the Website.
The first type (a text file) presents the schema (data
values) of the Website in an XML-like structure. We use
these XML files in the first experiment to compare
FiVaTech with EXALG. The second type of file (an html
file) presents the extracted SRRs (of each dynamic
section) of the test and the training Web pages of the
Website. A simple extractor program that uses both the
identified nSRR nodes in the schema tree and
the templates associated with these nodes is
implemented to output these HTML files. We use these
files in the second experiment to evaluate FiVaTech as an
SRRs extractor and compare the system with the three
record-level approaches DEPTA, ViPER, and MSE.
Finally, the third type of file (an Excel file) contains the
data items of the set of all attributes of a basic type;
every column in the file has the set of all instances of a
basic type that are collected from the test and the
training Web pages. We use these Excel files in the
second experiment to compare the alignment
results of FiVaTech with the alignment results of
DEPTA.
6.1 FiVaTech as Schema Extractor

Given the detected schema Se of a Website and
the manually constructed schema Sm for this site,
EXALG evaluates the resulted schema Se by
comparing data extracted by leaf attributes Ae of this
schema from collections of Web pages of this site.
However, this is not enough for two reasons. First, many
Web applications (e.g., information integration systems)
need such schemas as input, so it is very important to
evaluate the whole schema Se. Second, for Web
data extraction, the values of an attribute may be
extracted correctly (partially correct as defined by
EXALG [1]) but its schema is incorrect, and vice versa.
For example, the first instance of a repetitive data record
is often excluded from the set but is recognized as a
tuple. Thus, all instances of the data record are extracted
although the schema is wrong (the first instance is
identified as of a tuple type while the remaining are
instances of a set type). Meanwhile, many disjunctive
types and empty types (corresponding to no data in
the schema Sm) are extracted by EXALG but are
considered correct because they did not extract wrong
results.
6.2 FiVaTech as a SRRs Extractor

 The popular approaches that extract SRRs
from one or more data sections of a Webpage, the main
problem is to detect record boundaries. The minor
problem is to align data inside these data records.
However, most approaches concern with the main
problem except for DEPTA, which applies partial tree
alignment for the second problem. Therefore, we
compare FiVaTech with DEPTA in both steps and focus
on the first step when comparing with ViPER and MSE.

In the second experiment (a comparison with
DEPTA), we configure FiVaTech to detect the schema
from a single Webpage, although this will give an
incorrect schema outside the span of sections of
multiple data records (nSRRs), but we are only
concerning with data sections and the SRRs inside
each section. We got the system demo from the
author and ran DEPTA on the manually labeled
Testbed for Information Extraction from Deep Web
TBDW [12] Version 1.02 available at
http://daisen.cc.kyushu- u.ac.jp/TBDW/.
Unfortunately, DEPTA gave a result only for 11 Websites
and could not produce any output for the remaining 40
sites. So, we conducted the following experiment for
these 11 Websites. For SRRs extraction, we just used the
Web pages that have multiple data records. DEPTA
gave a good result for six Websites and extracted
incorrect SRRs for four Websites. For the last Website
(the site numbered 13 in Test bed), DEPTA merged
every two correct data records and extracted them
as a single data record. We considered half of the data
records are not extracted for this last site.

The last experiment compares FiVaTech with
the two visual-based data extraction systems, ViPER and
MSE. The first one (ViPER) is concerning with extracting
SRRs from a single (major) data section, while the
second one is a multiple section extraction system. We
use the 51 Websites of the Testbed referred above to
compare FiVaTech with ViPER, and the 38 multiple
sections Websites used in MSE to compare our system
with MSE. Actually, extracting of SRRs from Web
pages that have one or more data sections is a similar task.
The results in Table 3 show that all of the current data
extraction systems perform well in detecting data record
boundaries inside one or more data sections of a
Webpage. The closeness of the results between
FiVaTech and the two visual-based Web data
extraction systems ViPER and MSE gives an
indication that until this moment visual information do
not provide the required improvement that
researchers expect. This also appeared in the
experimental results of ViNTs [15]; the visual-based
Web data extraction with and without utilizing visual
features. FiVaTech fails to extract SRRs when the
peer node recognition algorithm incorrectly measures
the similarities among SRRs due to the very different
structure among them. Practically, this occurred very
infrequently in the entire test page (e.g., site
numbered 27 in the Testbed). Therefore, now, we can
claim that SRRs extraction is not a key challenge for the
problem of Web data extraction.

On a Core 2 Duo (2.00 GHz) laptop, the
response time is about 5-50 seconds, where the
majority of time is consumed at the peer node
recognition step. Therefore, the running time of
FiVaTech has a wide range (5-50 seconds) and leaves
room for improvement.

K. Syed Kousar Niasi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1091-1096

www.ijcsit.com 1095

6.3 Performance Evaluation
TABLE1 Performance on 11 Websites from Testbed

Version 1.02

Table 2 Performance Comparison between ViPER and

MSE

Chart 1.Performance on 11 Websites from Testbed
Version 1.02

Chart 2.Performance Comparison between ViPER and
MSE

7. CONCLUSION

 We can highlight three conclusion, Grid
applications have an increasing need of database systems.
Combining Grid and database technologies is an essential
approach to meet the requirements of large-scale Gird
applications. Almost every application running on Grid has
many requirements for access to structured data, Grid as a
platform with their resources can provide many benefits for
such king of database system.
7.1 Future Enhancement
 Future improvements in project management may be
made through better tools and practices. In future the
develop extraction template pages using on tree matching
algorithm and also used DOM tree matching algorithm in
well successful new project to the corresponding developer.

REFERENCE
[1] A. Arasu and H. Garcia-Molina, “Extracting Structured Data from

Web Pages,” Proc. ACM SIGMOD, pp. 337-348, 2003.
[2] C.-H. Chang and S.-C. Lui, “IEPAD: Information Extraction Based

on Pattern Discovery,” Proc. Int’l Conf. World Wide Web (WWW-
10), pp. 223-231, 2001.

[3] C.-H. Chang, M. Kayed, M.R. Girgis, and K.A. Shaalan, “Survey
of Web Information Extraction Systems,” IEEE Trans. Knowledge
and Data Eng., vol. 18, no. 10, pp. 1411-1428, Oct. 2006.

[4] V.Crescenzi, G. Mecca, and P. Merialdo, “Knowledge and Data
Engineerings,” Proc. Int’l Conf. VeryLarge Databases (VLDB),
pp. 109-118, 2001.

[5] C.-N. Hsu and M. Dung, “Generating Finite-State Transducers for
Semi-Structured Data Extraction from the Web,” J. Information
Systems, vol. 23, no. 8, pp. 521-538, 1998.

[6] N.Kushmerick, D. Weld, and R. Doorenbos, “Wrapper Induction for
Information Extraction,” Proc. 15th Int’l Joint Conf. Artificial
Intelligence (IJCAI), pp. 729-735, 1997.

[7] A .H .F. Laender, B.A. Ribeiro-Neto, A.S. Silva, and J.S. Teixeira,
“A Brief Survey of Web Data Extraction Tools,” SIGMOD
Record, vol. 31, no. 2, pp. 84-93, 2002.

[8] B. Lib, R. Grossman, and Y. Zhai, “Mining Data Records in Web
pages,” Proc. Int’l Conf. Knowledge Discovery and Data
Mining (KDD), pp. 601-606, 2003.

[9] I. Muslea, S. Minton, and C. Knoblock, “A Hierarchical Approach
to Wrapper Induction,” Proc. Third Int’l Conf. Autonomous Agents
(AA ’99), 1999.

[10] K. Simon and G. Lausen, “ViPER: Augmenting Automatic
Information Extraction with Visual Perceptions,” Proc. Int’l Conf.
Information and Knowledge Management (CIKM), 2005.

[11] J. Wang and F.H. Lochovsky, “Data Extraction and Label
Assignment for Web Databases,” Proc. Int’l Conf. World Wide
Web (WWW-12), pp. 187-196, 2003.

[12] Y. Yamada, N. Craswell, T. Nakatoh, and S. Hirokawa, “Testbed
for Information Extraction from Deep Web,” Proc. Int’l Conf. World
Wide Web (WWW-13), pp. 346-347, 2004.

[13] W. Yang, “Identifying Syntactic Differences between Two Pro-
grams,” Software—Practice and Experience, vol. 21, no. 7, pp.
739- 755, 1991.

[14] Y. Zhai and B. Liu, “Web Data Extraction Based on Partial Tree
Alignment,” Proc. Int’l Conf. World Wide Web (WWW-14), pp. 76-
85, 2005.

[15] H.Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Fully
Automatic Wrapper Generation for Search Engines,” Proc. Int’l
Conf. World Wide Web (WWW), 2005.

[16] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, “Automatic
Extraction of Dynamic Record Sections from Search Engine Result
Pages,” Proc. Int’l Conf. Very Large Databases (VLDB), pp. 989-
1000, 2006.

[17] M. Kayed, C.-H. Chang. “FiVaTech: Page-Level Web Data
Extraction from Template Pages”, IEEE TKDE, vol. 22, no. 2, pp.
249-263, Feb. 2010.

[18] B. Liu, R. Grossman. Y. Zhai. “Mining data records from Web
pages.” KDD-03, 2003.

0
50

100
150
200
250
300
350
400
450

D
EP
TA

Fi
V
aT
ec
h

D
EP
TA

Fi
V
aT
ec
h

Actual SRRs : 419 Actual Attributes
: 92

SRR Extraction Alignment

Extracted

Correct

0
200
400
600
800
1000
1200
1400

V
ip
er

Fi
va
Te
ch

M
SE

Fi
va
Te
ch

693 1242

TBDW 693 MSE

Extracted

Correct

K. Syed Kousar Niasi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1091-1096

www.ijcsit.com 1096

